The Geodesic Problem in Quasimetric Spaces

نویسنده

  • QINGLAN XIA
چکیده

In this article, we study the geodesic problem in a generalized metric space, in which the distance function satisfies a relaxed triangle inequality d(x, y) ≤ σ(d(x, z) +d(z, y)) for some constant σ ≥ 1, rather than the usual triangle inequality. Such a space is called a quasimetric space. We show that many well-known results in metric spaces (e.g. Ascoli-Arzelà theorem) still hold in quasimetric spaces. Moreover, we explore conditions under which a quasimetric will induce an intrinsic metric. As an example, we introduce a family of quasimetrics on the space of atomic probability measures. The associated intrinsic metrics induced by these quasimetrics coincide with the dα metric studied early in the study of branching structures arisen in ramified optimal transportation. An optimal transport path between two atomic probability measures typically has a “tree shaped” branching structure. Here, we show that these optimal transport paths turn out to be geodesics in these intrinsic metric spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convexity and Geodesic Metric Spaces

In this paper, we first present a preliminary study on metric segments and geodesics in metric spaces. Then we recall the concept of d-convexity of sets and functions in the sense of Menger and study some properties of d-convex sets and d-convex functions as well as extreme points and faces of d-convex sets in normed spaces. Finally we study the continuity of d-convex functions in geodesic metr...

متن کامل

Geodesic metric spaces and generalized nonexpansive multivalued mappings

In this paper, we present some common fixed point theorems for two generalized nonexpansive multivalued mappings in CAT(0) spaces as well as in UCED Banach spaces. Moreover, we prove the existence of fixed points for generalized nonexpansive multivalued mappings in complete geodesic metric spaces with convex metric for which the asymptotic center of a bounded sequence in a bounded closed convex...

متن کامل

Variational Principles and Completeness in Pseudo-Quasimetric Spaces

In this paper we establish new forward and backward versions of Ekeland’s variational principle for the class of strictly-decreasing forward(resp. backward-) lower-semicontinuou functionals in pseudo-quasimetric spaces. We do not require that the space under consideration either is complete or enjoys the limit uniqueness property due to the fact that the collections of forward and backward limi...

متن کامل

Localic Completion of Quasimetric Spaces

We give a constructive localic account of the completion of quasimetric spaces. In the context of Lawvere’s approach, using enriched categories, the points of the completion are flat left modules over the quasimetric space. The completion is a triquotient surjective image of a space of Cauchy sequences and can also be embedded in a continuous dcpo, the “ball domain”. Various examples and constr...

متن کامل

Logic of approximate entailment in quasimetric and in metric spaces

It is known that a quasimetric space can be represented by means of a metric space; the points of the former space become closed subsets of the latter one, and the role of the quasimetric is assumed by the Hausdorff quasidistance. In this paper, we show that, in a slightly more special context, a sharpened version of this representation theorem holds. Namely, we assume a quasimetric to fulfil s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008